Augmenting Software Bills of Materials with Software
Vulnerability Description: A Preliminary Study on GitHub

Davide Fucci
davide.fucci@bth.se
Blekinge Institute of Technology
Karlskrona, Sweden

Simone Romano
siromano@unisa.it
University of Salerno
Fisciano, Italy

Abstract

Software Bills of Material (SBOMs) are becoming a consolidated—
and often enforced by governmental regulations—way to describe
software composition. However, based on recent studies, SBOMs
suffer from limited support for their consumption and lack infor-
mation beyond simple dependencies, especially regarding software
vulnerabilities. This paper reports the results of a preliminary study
in which we augmented SBOMs of 40 open-source projects with
information about Common Vulnerabilities and Exposures (CVE) ex-
posed by project dependencies. Our augmented SBOMs have been
evaluated by submitting pull requests and by asking project owners
to answer a survey. Although, in most cases, augmented SBOMs
were not directly accepted because owners required a continuous
SBOM update, the received feedback shows the usefulness of the
suggested SBOM augmentation.

CCS Concepts

« Software and its engineering — Software libraries and repos-
itories; « Security and privacy — Software and application
security.

Keywords

SBOM, VEX, Vulnerabilities management, Software repositories

ACM Reference Format:

Davide Fucci, Massimiliano Di Penta, Simone Romano, and Giuseppe Scan-
niello. 2025. Augmenting Software Bills of Materials with Software Vulner-
ability Description: A Preliminary Study on GitHub. In 33rd ACM Interna-
tional Conference on the Foundations of Software Engineering (FSE Companion
'25), June 23-28, 2025, Trondheim, Norway. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3696630.3728513

1 Introduction

The transparency of software products in terms of their compo-
nents, known as Software Composition Analysis (SCA) [3, 17], is
desirable for multiple reasons. On the one side, this allows software

This work is licensed under a Creative Commons Attribution 4.0 International License.
FSE Companion °25, June 23-28, 2025, Trondheim, Norway

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1276-0/2025/06

https://doi.org/10.1145/3696630.3728513

Massimiliano Di Penta
University of Sannio
Benevento, Italy
dipenta@unisannio.it

Giuseppe Scanniello
gscanniello@unisa.it
University of Salerno

Fisciano, Italy

consumers to know whether the software contains components
originating from undesired providers. For example, a government
might avoid using, for their applications, software components
originating from hostile countries. Second, the analysis of software
components helps ensure the software is not violating licensing—
e.g., by containing components with an incompatible license or
copyrights. Last, and often more importantly, software composi-
tion allows knowing whether a piece of software depends on a
vulnerable component.

A pretty consolidated and machine-readable way to describe
software composition and, in general, detailing different pieces of
information concerning supply-chain relationships is a Software
Bills of Material (SBOM). SBOM adoption is, in recent years, not
only motivated by the aforementioned needs but also by govern-
mental regulations, such as the 2021 United States Executive Order
14028 [9] or the more recent European Union Cyber Resilience Act
(CRA) [14].

Several researchers have empirically investigated the needs,
adoption, and challenges of utilizing SBOMs in software devel-
opment and distribution [2, 10, 11, 16, 19, 22]. On the one hand,
there is a general agreement on the usefulness of SBOMs, and there
is an increasing availability of tool support for SBOM generation,
although the latter is generally limited to analyzing and document-
ing package-level dependencies from manifest/lock files. On the
other hand, the studies that were conducted pointed out insufficient
support in terms of tools for SBOM consumption and a limited pres-
ence of information necessary for software vulnerability assessment.
More specifically, while in principle existing SBOM formats allow
explicitly documenting software vulnerabilities, SBOM files (or sim-
ply SBOMs, from here onwards) generated by existing tools (e.g.,
CycloneDX tools or the GitHub SBOM generator) merely document
the (directly or indirectly) used components and their versions, and
a vulnerability assessment remains a task to be conducted by the
SBOM consumer using other software tools. Therefore, it appears
to be importance to ask the following question:

To what extent would it be useful to augment SBOMs
with information about components’ vulnerabilities?

Vulnerability scanners can analyze SBOM files, but their re-
sults lack system-specific context regarding a vulnerable depen-
dency—specifically, whether the vulnerability is exploitable. A stan-
dardized approach to documenting vulnerabilities in context is es-
sential to enhance transparency between dependency providers and

https://orcid.org/0000-0002-0679-4361
https://orcid.org/0000-0002-0340-9747
https://orcid.org/0000-0003-4880-3622
https://orcid.org/0000-0003-0024-7508
https://doi.org/10.1145/3696630.3728513
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3696630.3728513
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3696630.3728513&domain=pdf&date_stamp=2025-07-28

FSE Companion ’25, June 23-28, 2025, Trondheim, Norway

their consumers. Answering the research question above could be
pivotal for bridging the gap between static software transparency
tools (e.g., SBOMs) and dynamic vulnerability-related information,
ultimately contributing to safer and more resilient software.

To provide initial evidence and clarify this doubt, this paper
reports the result of a preliminary empirical study in which we aug-
mented the SBOMs of 40 existing open-source projects hosted on
GitHub and investigated—by opening Pull Requests (PRs)—whether
the project owners were willing to leverage the augmented SBOMs.

The feedback provided by project contributors who participated
in the study, by either engaging in PR discussions or by answering a
survey we attached to the PRs, confirmed the value of augmenting
SBOMs with vulnerability-related information. At the same time,
they expressed the need for a continuous generation of such pieces
of information, possibly through tools integrated into the project’s
Continuous Integration (CI) pipeline.

Data, code, and materials necessary to replicate the findings of
our study are available online [6].

2 Background and Related Work

This section provides background notions and literature analysis
on SBOMs and their adoptions, needs, and challenges.

An SBOM is a formal machine-readable document that contains
the details and supply-chain relationships of open-source and pro-
prietary components used in building a software product [5]. Public
administrations have been pushing software manufacturers to use
SBOMs in both the United States and the European Union. Indeed, in
2021, the United States Federal Government, per President Biden’s
Executive Order 14028, laid down that any manufacturer releasing a
software product to a federal agency must provide an SBOM of the
released product [9]. In 2022, the European Commission proposed
the CRA [14], which entered into force in 2024. This regulation
forces software manufacturers operating in the European Union to
document vulnerabilities and components of their software prod-
ucts with the support of SBOMs.

There are currently two main SBOM standards, namely SPDX
(Software Product Data Exchange) and CycloneDX [22], which sup-
port the baseline component information for SBOMs [5]. Although
these standards allow adding vulnerability information within an
SBOM, it is recommended to use a separate document linked to the
SBOM, called VEX, to store vulnerability information [5]. In partic-
ular, VEX documents are used to convey the status (i.e., not affected,
affected, fixed, or under investigation) of vulnerabilities within the
components of a software product. SBOMs augmented with VEX
documents should help software manufacturers, users, and other
defenders more quickly and accurately assess the risks due to vul-
nerable components, which are often hidden behind opaque supply
chain relationships [5].

After President Biden’s Executive Order 14028 [9], there has
been an increasing interest in SBOMs. In 2022, the Linux Foun-
dation [19] surveyed 412 worldwide organizations to understand
SBOM’s readiness. The results of this survey show gaps in famil-
iarity with, production planning for, and consumption of SBOMs.
Xia et al. [22] conducted 17 interviews followed by a survey with
65 respondents to understand how practitioners perceive SBOMs.

632

Davide Fucci, Massimiliano Di Penta, Simone Romano, and Giuseppe Scanniello

One of the main findings is that improving transparency and visi-
bility into software products is deemed the main benefit of SBOMs.
Stalknaker et al. [16] conducted a study combining surveys and in-
terviews with practitioners to investigate how SBOMs are adopted
by five groups of stakeholders. Stalknaker et al. observed that the
adoption of SBOM:s is still low, although practitioners have been
using them in a variety of use cases—e.g., software licensing or
security assessment. Moreover, the study pointed out some limi-
tations of the current technology and practice for what concerns
SBOM consumption, in particular, related to security assessment.
Nocera et al. [12] analyzed the extent to which open-source projects
hosted on GitHub use SBOM generation tools and publish SBOMs.
The study results indicate that, while SBOM adoption is still low, it
is trending upward, and SBOMs are published in only 46% of the
projects using SBOM generation tools. Kloeg et al. [10] interviewed
groups of stakeholders involved in SBOM production and consump-
tion to delve into the reasons for low SBOM adoption. One of the
main reasons is the lack of knowledge or expertise about SBOMs.
Chaora et al. [2] analyzed the talks on SBOMs that took place in
public SBOM community engagement meetings. To promote SBOM
adoption, the authors foresaw regulations and a public-recognized
agency that audits and validates SBOMs submitted to a common
infrastructure. Finally, Nocera et al. [11] interviewed 10 practition-
ers working in the Italian software industry about SBOMs. The
study results indicate that SBOM adoption is low, yet the attention
of the Italian software industry to software supply chain-related
challenges is high.

To summarize, previous research has pointed out the importance
of SBOM usage but also pointed out current limitations related to
the technology and SBOM content. Related to the goal of our work,
the latter lacks vulnerability-related information.

3 Study Methodology

As stated in the introduction, the goal of this study is to pro-
vide initial evidence on the perceived usefulness of augmenting
SBOMs with vulnerability-related information. The context consists
of 40 pull requests from active open-source Java projects hosted on
GitHub. To address this goal, we focus on a more specific Research
Question (RQ):

What do open-source maintainers think about integrat-
ing VEX into their existing SBOMs?

The study of this RQ instantiates our general goal into a process
aimed at collecting feedback from maintainers/developers after
showing them SBOMs augmented with vulnerability information
in the VEX format.

Our methodology consists of the steps presented in Figure 1.
We start by searching and filtering SBOMs in GitHub, leveraging
the SourceGraph [15] code search engine. To that end, we used
regular expressions tailored to the two most popular SBOM for-
mats: SPDX [18] and CycloneDX [20]. These regular expressions
targeted mandatory attributes (e.g., the string SPDXID for SPDX and
bomFormat for CycloneDX) and specific file extensions (e.g., . yaml,
.spdx, .xml, and . json). Furthermore, we excluded SBOM files in-
tended as fixtures or used for testing purposes by employing regex
expressions such as *fixturex, example, and test. Additionally,
SBOM files that did not declare any dependencies were filtered out,

Augmenting Software Bills of Materials with Software Vulnerability Description: A Preliminary Study on GitHub

FSE Companion ’25, June 23-28, 2025, Trondheim, Norway

SBOM search Q Repositories selection v

VEX creation

O Data analysis @

<1, PR submission

* SBOMin CycloneDX format
* Dependencies with CVE
* Rank by popularity

* SourceGraph search SBOM
« Filter out fixtures, examples

—

« Collect CVEs in SBOM
* Create VEX for each SBOM

* PR VEX file + survey link

* PR open for 60 days * Descriptive statistics
* Reminders after 30 days * Thematic analysis
* Pilot with five VEX files

]

1047 repositories Top-45 repositories

45 VEXfiles

2 merged/10 rejected/28 open
5 survey responses

Maintainers views on
integrating VEX with SBOM

Figure 1: Methodology overview.

yielding 1,047 repositories containing relevant SBOM data. It is im-
portant to mention that the goal of this preliminary screening was
to create a relatively large dataset of open-source projects hosted
on GitHub and have SBOMs available in their repositories. How-
ever, in the study presented in this paper, we restricted the analysis
to projects adopting the CycloneDX format only. The reason for
this choice was practical and due to the adopted tool (vexctl) to
generate VEX files, which did not support the embedded format to
describe vulnerabilities required by the SPDX format. This choice
reduced the number of studied repositories to 270.

Subsequently, we enriched repositories whose dependencies in
the SBOM had at least one CVE according to the osv-scanner [8].
We selected this tool as it aggregates vulnerabilities from 25 differ-
ent ecosystems (e.g., npm, crates.io) and databases (e.g., GitHub
Security Advisory, RustSect) and provides a human and machine-
readable data format to describe vulnerabilities.! Finally, using the
GitHub API, we obtained, for each of the remaining 117 reposi-
tories, the number of stars, contributors, and total commits. The
latter were used to rank repositories by popularity, from which we
selected the top 45 for further analysis.

We downloaded all SBOM files present in these repositories and
extracted information about vulnerabilities associated with the
dependencies declared in each SBOM using osv-scanner. Based
on the identified vulnerabilities, we generated a VEX file for each
SBOM using the vexctl [13] tool. We selected this tool as it is one
of the few existing solutions to support the generation of VEX,
starting with SBOM and CVE information.

We opened a PR in each selected repository, committing the VEX
file. The PR message included a link to an online survey, inviting
respondents to rate their agreement on a 5-point Likert scale [4]
about the perceived usefulness of using VEX to augment SBOMs
with vulnerability information. Moreover, the respondents could
provide qualitative feedback explaining their responses.

We left the PRs open for 60 days, during which we monitored
and collected survey responses as well as comments left directly on
the PRs. After 30 days of inactivity (since the PR was opened), we
sent reminders to the repository maintainers. The collected data
were subsequently analyzed to assess the reception and perceived
usefulness of integrating VEX into SBOM workflows.

It is worth mentioning that before the actual study, we performed
a pilot of two weeks targeting five randomly selected repositories.
Two PRs were accepted during the pilot, while the maintainers did
not review the remaining three. One maintainer filled in the survey.
Since no other feedback was provided during the pilot, we decided

IThe vulnerability scan was run on 2024/10/03.

633

to carry on with the study. The pilot projects were excluded from
the final analysis, resulting in a total of 40 projects being considered.

4 Study Results

We open a PR including the VEX file for an SBOM tracked in 40
GitHub repositories. Out of these, two were merged, 10 were re-
jected and 28 did not receive a review by the repository maintainers
(i.e., open). The survey collected five complete responses from main-
tainers who confirmed that they had reviewed the PR.

4.1 Analysis of Pull Request Comments

The number of comments (excluding bot-generated comments and
the reminder we sent to the maintainers) for PRs that were not
closed during the time of the study ranged between zero and six.
For rejected PRs, the number of comments in our discussion with the
maintainers ranged between one and five. Accepted PR discussion
length ranged between zero and two comments.

The thematic analysis of comments regarding unmerged PRs
revealed uncertainty surrounding the information contained in
VEX files. Maintainers expressed willingness to adopt VEX only if
provided with mechanisms for continuous (e.g., triggered by SBOM
generation) and automated updates (e.g., integrated in CI pipelines).

Maintainers highlighted a critical limitation of the information
reported in a VEX—i.e., its tendency to become outdated, potentially
misrepresenting the security status of project dependencies. Despite
this, they recognized that the dynamic integration of VEX with
SBOM could enhance overall security.

Another reason for rejecting PRs was the reliance on alternative
tools, such as Dependabot [7] and Grype [1], for scanning SBOMs
for vulnerabilities. However, these tools do not effectively manage
the lifecycle of identified vulnerabilities by tracking their state
(e.g., patched or unpatched) and rationale, nor do they facilitate
communication of this information to users.

An additional challenge stems from the lack of standardization
across SBOM formats and the varying approaches to integrating
them with VEX. This ambiguity has deterred maintainers from
adopting VEX or led them to delay its integration until more stable
standards emerge. One discussion cited the forthcoming European
Union CRA [14] as a potential catalyst for advancing the combined
use of SBOM and VEX.

Finally, while one maintainer acknowledged the importance of
VEX, they emphasized its relevance primarily for internal use rather
than for public projects.

FSE Companion ’25, June 23-28, 2025, Trondheim, Norway

4.2 Analysis of Survey Results

Among the five responses, one was from a maintainer who accepted
the PR, two from maintainers who rejected it, and two from main-
tainers who had not yet decided after reviewing it. One respondent
strongly agreed that adding vulnerability information to dependen-
cies listed in an SBOM file is beneficial, while two partially agreed.
These respondents emphasized the importance of transparency in
open-source project security, noting that VEX can contribute to
achieving this goal. However, they also highlighted that the effec-
tiveness of VEX depends on the quality of the CVE databases it
relies on, with its utility potentially limited by the signal-to-noise
ratio in publicly available vulnerability data. The remaining two
respondents disagreed, justifying their position by pointing to the
availability of other tools and services capable of continuously
scanning SBOM files.

4.3 Discussion

The maintainers who took part in the study expressed support
for adopting VEX, provided it is automated and seamlessly inte-
grated into project pipelines (e.g., alongside SBOM creation and
updates). However, some maintainers noted that VEX might be
redundant since existing tools (e.g., Grype) already report vulner-
abilities. Nonetheless, such reports lack a standardized structure,
making them non-interchangeable and unsuitable for tracking vul-
nerability lifecycles. More importantly, such reports cannot be eas-
ily integrated into SBOMs, the latter being considered particularly
important for the studied projects (all the studied projects were
adopting SBOMs already).

As a result, a key recommendation for tool providers is to sup-
port VEX format output as a lingua franca for sharing information
about vulnerabilities in project dependencies and to integrate the
VEX document generation with the SBOM generation, for example,
within the project’s CI pipeline.

Another significant challenge to VEX adoption is the lack
of standardization. While SBOM has established two de facto
standards—CycloneDX and SPDX—the former, supported by the
OWASP Foundation, sponsors VEX format development, and the
latter (SPDX v3.0) enables embedding vulnerability information.
Such results are in line with concerns expressed in previous studies
about the lack of a common standardization for SBOMs [16, 22].

Meanwhile, legislators are increasingly requiring SBOMs and
vulnerability management. However, the EU CRA, which became
applicable in December 2027, does not mandate a specific SBOM for-
mat or the use of VEX for vulnerability management. To align with
legislative demands, further standardization of VEX is essential.

5 Threats to Validity

In the following, we discuss the threats that might affect our results
based on the validity schema by Wohlin et al. [21].

Construct Validity. The approach we used to detect the adoption
of SBOMs might affect the results. That is, the heuristic (based on
the SourceGraph code search engine) to detect repositories may
have missed some of them that used SBOMs. This threat is well
recognized in studies similar to ours [12]. Similarly, we rely on a
single tool, vexctl, to create VEX files based on reported CVEs.

634

Davide Fucci, Massimiliano Di Penta, Simone Romano, and Giuseppe Scanniello

Internal validity. A possible threat to internal validity is self-
selection bias because those who engaged in the PR discus-
sion/survey could be developers more interested in adopting the
proposed SBOM augmentation. This threat is partially mitigated
by, at least, already focusing on projects adopting SBOMs, and,
therefore, considering supply chain documentation important.
Conclusion Validity. There could be risks that the results are affected
by: (i) limited time (60 days) for contributors to review our PRs and
(ii) limited activity of contributors on the repositories suggesting
scant interest of developers on the hosted projects Given the pre-
liminary nature of our study, these threats to validity are not of
significant concern.

External Validity. The most important threat to this kind of validity
is that our study is limited to: (i) open-source projects hosted on
GitHub and (ii) SBOM generation tools owned by CycloneDX. In-
deed, the second point does not represent a serious threat to validity
because we opened a PR suggesting augmenting the existing SBOM
with the generated VEX and asked owners to answer a survey on
vulnerability-augmented SBOMs. Given our research objective, the
consideration of CycloneDX (or any other SBOM standard) is not a
primary concern.

6 Conclusion and Future work

In this paper, we presented the initial results of a preliminary em-
pirical study where we enhanced the Software Bill of Materials
(SBOM:s) of 40 open-source projects by incorporating information
about Common Vulnerabilities and Exposures (CVEs) associated
with project dependencies. The augmented SBOMs have been eval-
uated by submitting PRs and by asking project owners to answer
a survey. In most cases, our augmented SBOMs were not directly
accepted because developers required a continuous SBOM update.
However, the feedback of the projects’ owners suggests the useful-
ness of the suggested SBOM augmentation.

Our preliminary results support the viability of a number of
future research directions including:

e Develop and evaluate tools or methodologies for automat-
ing the continuous update of augmented SBOMs to address
owners’ concerns about manual maintenance.

o Investigate how to efficiently and continuously monitor de-
pendency changes and associated CVEs.

o Expand the study to include a diverse set of open- and closed-
source projects.

o Get feedback from project owners and developers to refine
the presentation and usability of augmented SBOMs.

Acknowledgments

This research is partially supported by the The Knowledge Founda-
tion of Sweden (KKS) under the SESAM project (#20230087) and
S.ERT. Research Profile, by the European Union NEXTGenera-
tionEU project, and by the Italian Ministry of the University and
Research (MUR) Research Projects of Significant National Interest
(PRIN) under MSR4SBOM project (D53D23017310001). We thank
Oleksii Novikov for his contribution to the dataset creation.

Augmenting Software Bills of Materials with Software Vulnerability Description: A Preliminary Study on GitHub

References

(1]

[2

—

[10]

Anchore. 2020. Grype: A vulnerability scanner for container images and filesystems.
Available at https://github.com/anchore/grype (Last Accessed: January 16, 2025).
Anesu Chaora, Nathan Ensmenger, and L Jean Camp. 2023. Discourse, Challenges,
and Prospects Around the Adoption and Dissemination of Software Bills of
Materials (SBOMs). In 2023 IEEE International Symposium on Technology and
Society (ISTAS). IEEE, 1-4. https://doi.org/10.1109/ISTAS57930.2023.10305922
Yang Chen, Andrew E. Santosa, Asankhaya Sharma, and David Lo. 2020. Auto-
mated identification of libraries from vulnerability data. In 2020 IEEE/ACM 42nd
International Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). ACM, 90-99.

Peter M Chisnall. 1993. Questionnaire design, interviewing and attitude mea-
surement. Journal of the Market Research Society 35, 4 (1993), 392-393.
Cybersecurity and Infrastructure Security Agency (CISA). 2024. Framing Soft-
ware Component Transparency: Establishing a Common Software Bill of Materials
(SBOM) (3rd ed.). Available at https://www.cisa.gov/resources-tools/resources/
framing-software-component-transparency-2024 (Last Accessed: January 16,
2025).

Davide Fucci, Massimiliano Di Penta, Simone Romano, and Giuseppe Scannielllo.
2025. Replication package of the paper "Augmenting Software Bills of Materials
with Software Vulnerability Description: A Preliminary Study on GitHub". https:
//github.com/SESAM-project/SBOM-VEX-acceptance

GitHub Inc. 2019. Dependabot: Automated dependency updates built into GitHub.
Available at https://github.com/dependabot (Last Accessed: January 16, 2025).
Google Inc. 2022. OSV Scanner: Vulnerability scanner written in Go which uses the
data provided by OSV. Available at https://github.com/google/osv-scanner (Last
Accessed: January 16, 2025).

The United States Federal Governmen. 2021. Executive Order on Im-
proving the Nation’s Cybersecurity | The White House. Available
at https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/
executive-order-on-improving-the-nations-cybersecurity/ (Last Accessed: Janu-
ary 16, 2025).

Berend Kloeg, Aaron Yi Ding, Sjoerd Pellegrom, and Yury Zhauniarovich. 2024.
Charting the Path to SBOM Adoption: A Business Stakeholder-Centric Approach.
In ASIA CCS °24: Proceedings of the 19th ACM Asia Conference on Computer and
Communications Security. ACM, 1770-1783. https://doi.org/10.1145/3634737.
3637659

635

FSE Companion ’25, June 23-28, 2025, Trondheim, Norway

[11] Sabato Nocera, Massimiliano Di Penta, Rita Francese, Simone Romano, and

[12

[20
[21

[22

Giuseppe Scanniello. 2024. If it’s not SBOM, then what? How Italian Practitioners
Manage the Software Supply Chain. In 2024 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 730~740. https://doi.org/10.
1109/ICSME58944.2024.00077

Sabato Nocera, Simone Romano, Massimiliano Di Penta, Rita Francese, and
Giuseppe Scanniello. 2023. Software Bill of Materials Adoption: A Mining Study
from GitHub. In 2023 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 39-49. https://doi.org/10.1109/ICSME58846.2023.00016
openvex. 2023. vexctl: A tool to make VEX work. Available at https://github.com/
openvex/vexctl (Last Accessed: January 16, 2025).

The European Parliament and The Council of the European Union. 2024. Cyber
Resilience Act. Available at https://eur-lex.europa.eu/legal-content/EN/TXT/
2uri=CELEX%3A32024R2847 (Last Accessed: January 16, 2025).

Sourcegraph Inc. 2013. Code Intelligence for Untangling Big, Messy Databases.
Available at https://sourcegraph.com (Last Accessed: January 16, 2025).

Trevor Stalnaker, Nathan Wintersgill, Oscar Chaparro, Massimiliano Di Penta,
Daniel M German, and Denys Poshyvanyk. 2024. BOMs Away! Inside the Minds of
Stakeholders: A Comprehensive Study of Bills of Materials for Software Systems.
In 2024 IEEE/ACM 46th International Conference on Software Engineering (ICSE).
ACM, 44:1-44:13. https://doi.org/10.1145/3597503.3623347

Liran Tal. 2023. Guide to Software Composition Analysis. Available at https:
//snyk.io/series/open-source-security/software-composition-analysis-sca/ (Last
Accessed: January 16, 2025).

The Linux Foundation. 2011. Software Package Data eXchange (SPDX). Available
at https://spdx.dev/use/specifications/ (Last Accessed: January 16, 2025).

The Linux Foundation. 2022. The State of Software Bill of Materials (SBOM) and
Cybersecurity Readiness. Available at https://www.linuxfoundation.org/research/
the-state- of- software-bill- of- materials- sbom-and- cybersecurity-readiness (Last
Accessed: January 16, 2025).

The OWASP Foundation. 2018. CycloneDX. https://cyclonedx.org Available at
https://cyclonedx.org(Last Accessed: January 16, 2025).

Claes Wohlin, Per Runeson, Martin Host, Magnus C Ohlsson, Bjorn Regnell, and
Anders Wesslén. 2012. Experimentation in Software Engineering. Springer.
Boming Xia, Tingting Bi, Zhenchang Xing, Qinghua Lu, and Liming Zhu. 2023.
An Empirical Study on Software Bill of Materials: Where We Stand and the Road
Ahead. In 2023 IEEE/ACM 45th International Conference on Software Engineering
(ICSE). IEEE, 2630-2642. https://doi.org/10.1109/ICSE48619.2023.00219

https://github.com/anchore/grype
https://doi.org/10.1109/ISTAS57930.2023.10305922
https://www.cisa.gov/resources-tools/resources/framing-software-component-transparency-2024
https://www.cisa.gov/resources-tools/resources/framing-software-component-transparency-2024
https://github.com/SESAM-project/SBOM-VEX-acceptance
https://github.com/SESAM-project/SBOM-VEX-acceptance
https://github.com/dependabot
https://github.com/google/osv-scanner
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://doi.org/10.1145/3634737.3637659
https://doi.org/10.1145/3634737.3637659
https://doi.org/10.1109/ICSME58944.2024.00077
https://doi.org/10.1109/ICSME58944.2024.00077
https://doi.org/10.1109/ICSME58846.2023.00016
https://github.com/openvex/vexctl
https://github.com/openvex/vexctl
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32024R2847
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32024R2847
https://sourcegraph.com
https://doi.org/10.1145/3597503.3623347
https://snyk.io/series/open-source-security/software-composition-analysis-sca/
https://snyk.io/series/open-source-security/software-composition-analysis-sca/
https://spdx.dev/use/specifications/
https://www.linuxfoundation.org/research/the-state-of-software-bill-of-materials-sbom-and-cybersecurity-readiness
https://www.linuxfoundation.org/research/the-state-of-software-bill-of-materials-sbom-and-cybersecurity-readiness
https://cyclonedx.org
https://cyclonedx.org
https://doi.org/10.1109/ICSE48619.2023.00219

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Study Methodology
	4 Study Results
	4.1 Analysis of Pull Request Comments
	4.2 Analysis of Survey Results
	4.3 Discussion

	5 Threats to Validity
	6 Conclusion and Future work
	References

